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A B S T R A C T

The coordinates of a time transfer station are crucial parameters for time transfer based on Global Navigation 
Satellite System (GNSS) codes. In dynamic scenarios, larger position errors are introduced, necessitating an 
analysis and evaluation for the impact of the receiver position error on GNSS time transfer. In this paper, the 
method for mapping the coordinate vectors of both the receiver and the satellite to GNSS time transfer is pro
posed. The time transfer error caused by the receiver position error is quantified. The error angle, which can 
describe the position error of the receiver in three-dimensional space, is defined to characterize the time transfer 
error along with the position error. An analytical expression describing the relationship between these factors is 
derived and validated. When the error angle is constant, the time transfer error is approximately linear to the 
position error. With constant position error, the time transfer error is affected approximately by the cosine 
function of the error angle.

1. Introduction

In dynamic scenarios, there are increasing requirements for high- 
precision time synchronization. For instance, the implementation of 
Multiple-Input Multiple-Output techniques in 5th Generation Mobile 
Communication Technology for Railways (5G-R) [1] requires that the 
time difference among system components be less than 65 ns. High- 
precision time transfer based on Global Navigation Satellite System 
(GNSS) codes has been extensively developed and widely applied among 
stationary stations, such as the laboratories contributing to the Inter
national Atomic Time (TAI) (see details in [2–4]). As the important 
known parameters, the coordinates of a time transfer station could be 
accurately calculated beforehand in stationary stations. In mobile sta
tions, it is difficult to fix the position precisely during a short period so 
the position errors are larger. Therefore, for GNSS time transfer in mo
bile stations, it is essential to analyze and evaluate the impact of the 
station position on time transfer.

Various transmission errors may be introduced into GNSS posi
tioning and timing performance during the propagation of GNSS signals, 
for instance, the tropospheric effects and the ionospheric effects. The 
tropospheric delay can be represented with the product of the tropo
spheric refraction in the zenith direction and a mapping function related 
to the elevation angle [5]. Traditional models for zenith tropospheric 
effect correction include the Saastamoinen model in [6] and the 

Hopfield model in [7]. Mapping functions such as the Niell Mapping 
Function in [8], the Vienna Mapping Function 1 in [9], and the Global 
Mapping Function in [10] are widely used. Reference [11] demonstrated 
that reducing the sampling rate of troposphere parameters to 15 min and 
applying constraints in Precise Point Positioning (PPP) time transfer 
could significantly improve clock solution accuracy, reducing errors by 
up to a factor of 10 for some stations compared to traditional methods. 
For the single-frequency users, the ionospheric delay can be corrected by 
the ionospheric models; for the multi-frequency users, ionospheric ef
fects can be eliminated by forming the linear combination of observa
tions. In Global Positioning System (GPS) single-frequency ionospheric 
delay correction, the impact of the latitudes and the solar activities on 
the initial phase and nighttime term of the Klobuchar model were 
studied in [12]. A ten-parameter Klobuchar-like model was proposed, 
which could improve ionospheric delay correction by 10 % compared to 
the Klobuchar model. The ionosphere scintillation behavior was studied 
and modeled in [13]. The effect of the Total Electron Content (TEC) and 
the Rate of TEC Index on positioning error during solar flares and 
geomagnetic storms was evaluated in [14]. Reference [15] quantified 
ionospheric effects on time and frequency transfer solutions. The 
research showed that the first-order ionospheric delays could reach up to 
100 ns (ns) during ionospheric storms, while the second-order delays 
were about 8 picoseconds (ps) on quiet days and up to 15 ps during 
ionospheric storms. These delays could significantly impact the accuracy 
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of time transfer, especially for long-baseline measurements or during 
periods of high ionospheric activity. The hardware delays in the satellite 
and the receiver are also among the errors, with the former obtained 
from the navigation messages and the latter measured and corrected by 
calibration techniques. A method called Time Differenced Double Dif
ference Carrier Phase (TDDDCP) to estimate differential phase bias or 
carrier phase bias of NavIC receiver was proposed by [16]. The carrier 
phase measurements corrected by the TDDDCP method provided better 
positioning solutions in the Z-coordinate than those from the DDCP 
method. Precise time transfer can only be achieved with a calibrated 
receiver. Hardware delay of an uncalibrated receiver will be introduced 
into the time transfer results, up to a few hundred nanoseconds. The 
calibration techniques of the receiver are mainly divided into differen
tial calibration [17] with an uncertainty about 3.4 ns and absolute 
calibration [18–22] with a total uncertainty better than 2 ns. This means 
that an uncertainty of several nanoseconds will be introduced into the 
time transfer results.

In [23], the receiver coordinates with errors were mapped by the 
satellite coordinates to validate the common sense that a 3-meter posi
tion error results in a time transfer error of more than 10 ns. However, 
the analysis relied solely on the geometric distance between the satellite 
and the receiver, without considering other factors, such as the iono
spheric and tropospheric effects. The proposed time transfer error model 
only considered the geometric distance and did not explain why iono
spheric and tropospheric effects are not included. Reference [24] 
mentioned the phenomenon where the position error led to significant 
geometric distance error but caused minor errors in the ionospheric 
delay and the Sagnac effect. Therefore, the conclusion that the position 
error had little impact on two-way time transfer is inferred in [24]. 
However, this inference was based on a phenomenon that lacked 
quantitative description and theoretical analysis and the time transfer 
error model had not been proposed. The position of the receiver and the 
satellite in three-dimensional space can be represented by the coordi
nate vectors, facilitating precise characterization and analysis. To 
comprehensively analyze the impact, the position error, which can be 
represented by coordinate vectors of both the receiver and the satellite, 
should be mapped into GNSS time transfer. This method is defined as the 
coordinate vector mapping in this paper and is used to study the impact 
of the position error on time transfer. The coordinate vectors of both the 
receiver and the satellite will be defined. The effects of the correction 
terms of the transmission errors in time transfer will be analyzed indi
vidually. The combined impact of these effects on time transfer will be 
studied. After the theoretical analysis, an analytical expression of time 

transfer error caused by the position error will be proposed in this paper.

2. Coordinate vectors and GNSS observation

A Cartesian coordinate system is defined in this section for describing 
the coordinate vectors of the receiver and the satellite. Since GNSS time 
transfer is conducted based on GNSS observation equations, this section 
will present the expressions for the observation equations based on the 
coordinate vectors.

2.1. Coordinate vectors of the receiver and the satellite

Position A and position B are defined to represent the true position 
and the position with an error. A local Cartesian coordinate system (E, N, 
U) with position A as the origin is constructed as shown in Fig. 1, whose 
E-axis points to the east and N-axis points to the north. ρA and ρB are the 
vector from position A to the satellite and the vector from position B to 
the satellite, respectively. r is the vector from position A to position B. 
The module of r is defined as the position error. ΔE, ΔN and ΔU are the 
projection of r onto the E-axis, the N-axis and the U-axis, respectively, 
which are defined as the coordinate errors. The relationship between the 
position error and the coordinate errors is expressed as follows: 

‖r‖ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΔE2 + ΔN2 + ΔU2

√
(1) 

θEl,A and θAz,A are the elevation and the azimuth of the satellite 
observed at position A. The angle between ρA and r is defined as the error 
angle θEA.

2.2. Relationship between time transfer error and GNSS observation

The pseudorange measurement on single-frequency is used to 
comprehensively analyze the correction terms of errors in GNSS time 
transfer including the ionospheric effects. TL - G is the time difference 
between the local clock and the GNSS system time (GNSS-T) and can be 
calculated as (2) and (3), with the principles detailed in [25]. The 
subscript A/B indicates that this is a variable based on position A/B. 

TL - G,A =
1
c
(PA − ‖ρA‖ − SA )+Trel,A − Ttropo,A − Tiono,A − GDA +Tsat,A (2) 

TL - G,B =
1
c
(PB − ‖ρB‖ − SB )+Trel,B − Ttropo,B − Tiono,B − GDB +Tsat,B (3) 

c is the velocity of the light. P is the pseudorange measurement, 
which has been corrected with the hardware delays of the GNSS time 
transfer receiver. ‖ρA‖ and ‖ρB‖ are the geometric distances from posi
tions A and B to the satellite separately. S is the Sagnac correction 
associated with the earth’s rotation. Trel is the relativistic clock correc
tion. Tiono and Ttropo are the ionospheric delay and the tropospheric 
delay, respectively. GD is the broadcast group delay. Tsat is the satellite 
clock correction. S, Trel, GD and Tsat, which can be calculated by the 
known parameters and the correction models, such as the rotational 
speed of the earth, are independent of the receiver coordinates. If the 
pseudorange measurement PA and PB at positions A and B are con
strained to be equal, the time transfer error ΔTL - G caused by the posi
tion error can be expressed as follows: 

ΔTL - G = TL - G,B − TL - G,A

=
1
c
(‖ρA‖ − ‖ρB‖ ) + Ttropo,A − Ttropo,B + Tiono,A − Tiono,B

(4) 

3. Coordinate vectors mapping to GNSS time transfer

From (4) in section 2.2, it can be seen that the time transfer error is 
affected by the geometric distance, the ionospheric delay, and the 
tropospheric delay. The impact of the position error on the three types of 
delay will be analyzed in sections 3.1 to 3.3. In section 3.4, the combined 

Fig. 1. A local Cartesian coordinate system (E, N, U) with position A as 
the origin.
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impact on GNSS time transfer will be studied.

3.1. Geometric distance delay

The signal propagation delay caused by the geometric distance be
tween the satellite and the receiver is defined as the geometric distance 
delay. The impact of the position error on the geometric distance delay 
will be analyzed through theoretical analysis and data fitting. ΔTgeo is 
the error of the geometric distance delay caused by the position error, 
and it can be calculated as follows: 

ΔTgeo =
‖ρA‖ − ‖ρB‖

c

=
‖ρA‖ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖r‖2
+ ‖ρA‖

2
− 2‖r‖‖ρA‖cosθEA

√

c

(5) 

‖r‖ and θEA are both independent variables of ΔTgeo. Eqs. (6) and (7)
are the first and the second order derivative functions of ΔTgeo with 
respect to ‖r‖, respectively. 

[
ΔTgeo

]
‖́r‖ = −

‖r‖ − ‖ρA‖cosθEA

c
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖r‖2
+ ‖ρA‖

2
− 2‖r‖‖ρA‖cosθEA

√ (6) 

[
ΔTgeo

]ʹ́‖r‖ =
‖ρA‖

2
(cos2θEA − 1)

c
(
‖r‖2

+ ‖ρA‖
2
− 2‖r‖‖ρA‖cosθEA

)1.5 (7) 

To make the analysis more realistic, the maximum position error of 
5000 meters (m), which is the worst case of the international search and 
rescue services [26] for the Beidou Navigation Satellite System (BDS), is 
taken as an example. The maximum value of ‖r‖ is set to 5000 m. θEA 

varies from 0◦ to 180◦. In light of the fact that ‖r‖ is much smaller than 
‖ρA‖ by tens of thousands of kilometers (km), the value of 

[
ΔTgeo

]ʹ́‖r‖ can 
be estimated. When θEA is 0◦ or 180◦, 

[
ΔTgeo

]ʹ́‖r‖ reaches the maximum 
value of 0; when θEA is 90◦, 

[
ΔTgeo

]ʹ́‖r‖ reaches the minimum value of 
− ‖ρA‖

2
/[c(‖r‖2

+ ‖ρA‖
2
)

1.5
], which approximates to 0. It can be deduced 

that 
[
ΔTgeo

]
‖́r‖ can be regarded as a constant. Therefore, an approxi

mately linear relationship between ‖r‖ and ΔTgeo can be inferred and 
expressed as (8). k is the proportional factor and depends only on θEA and 
‖r‖. When θEA is 0◦, k reaches its maximum value of 1/c; when θEA is 90◦

or 180◦, k reaches its minimum value of − 1/c. 
⎧
⎪⎪⎨

⎪⎪⎩

ΔTgeo = k‖r‖

k =
[
ΔTgeo

]
‖́r‖ = −

‖r‖ − ‖ρA‖cosθEA

c
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖r‖2
+ ‖ρA‖

2
− 2‖r‖‖ρA‖cosθEA

√ (8) 

A satellite with a lower orbital altitude exhibits a larger difference 

between ‖ρA‖ and ‖ρB‖ for the same ‖r‖, which results in a larger ΔTgeo. 
Therefore, the BDS Medium Earth Orbit (MEO) satellite with an orbital 
altitude of 21528 km is selected for ΔTgeo calculation. Based on the 
geometric relationship shown in Fig. 1, the corresponding values of 
ΔTgeo to different values of ‖r‖ and θEA can be calculated, which are the 
black hollow dots shown in Fig. 2. The linear function yθEA is used to fit 
the values of ΔTgeo when θEA are 0◦, 45◦, 90◦, 135◦, and 180◦, respec
tively. By adjusting the proportional factor of the linear function, the 
fitting of ΔTgeo can be achieved. The conclusion inferred from the good 
fit phenomenon is that when θEA is constant, the relationship between 
‖r‖ and ΔTgeo can be approximated as a linear relationship.

θEA influences ΔTgeo, in conjunction with ‖r‖. Thus, it is necessary to 
analyze the relationship between ΔTgeo and θEA. The relationship be
tween them can be approximated by data fitting. In Fig. 3, in the cases of 
different constant values of ‖r‖, the values of ΔTgeo can be fitted by 
different cosine functions with different values of amplitude. Therefore, 
when ‖r‖ is held constant, the relationship between ΔTgeo and θEA can be 
approximated by a cosine function, as expressed in (9). A is the ampli
tude of the cosine function. 

ΔTgeo = AcosθEA (9) 

In the case where ‖r‖ is 5000 m and ‖ρA‖ is 21528 km, the maximum 
of ΔTgeo is 16678.2 ns and the minimum is 1.9 ns. For the more common 
case where ‖r‖ is 5 m, the maximum and minimum values of ΔTgeo are 
16.7 ns and 1.5 × 10 - 6 ns, respectively.

Fig. 2. The values of ΔTgeo correspond to different values of ‖r‖ and θEA. The 
functions used for fitting are: yθEA=0◦ = 3.34‖r‖, yθEA=45◦ = 2.36‖r‖, yθEA=90◦ =

0‖r‖, yθEA=135◦ = − 2.36‖r‖, yθEA=180◦ = − 3.34‖r‖.

Fig. 3. The values of ΔTgeo correspond to different values of ‖r‖ and θEA. The 
functions used for fitting are: y‖r‖=1000 = 3340cos(θEA), y‖r‖=2000 =

6670cos(θEA), y‖r‖=3000 = 10000cos(θEA), y‖r‖=4000 = 13300cos(θEA), 
y‖r‖=5000 = 16700cos(θEA).

Fig. 4. The calculation process of the tropospheric delay Ttropo,A at position A.
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3.2. Tropospheric delay

The tropospheric delay Ttropo,A at position A, computed by the stan
dard North Atlantic Treaty Organization (NATO) hydrostatic model, is 
calculated following the procedure shown in Fig. 4. f

(
θEl,A

)
is a tropo

spheric mapping function of the elevation θEl,A. ΔR(hA) is the total 
tropospheric delay at the zenith for the ellipsoidal height hA of position 
A.

θEl,B and hB are the elevation of the satellite observed at position B 
and the ellipsoidal height of position B, respectively. The NATO hy
drostatic model is used for the computation of the tropospheric delay 
Ttropo,B at position B. f

(
θEl,B

)
is the tropospheric mapping function of 

θEl,B. ΔR(hB) is the total tropospheric delay at the zenith for hB. The 
tropospheric delay error ΔTtropo caused by the position error can be 
calculated as follows: 

ΔTtropo = Ttropo,B − Ttropo,A
= f

(
θEl,B

)
R(hB) − f

(
θEl,A

)
R(hA)

(10) 

The impact of the position error ‖r‖ on the tropospheric mapping 
function is analyzed first. The position error sphere with radius ‖r‖, is 

shown in Fig. 5. The angle between ρA and ρB is defined as ω. When the 
line defined by ρB is tangent to the position error sphere, ω reaches the 
maximum value, denoted as ωmax, which is expressed as 

ωmax = arcsin
(

‖r‖
‖ρA‖

)

(11) 

In order to estimate the range of θEl,B, only the maximum value ωmax 

of ω is considered. As shown in Fig. 6, different values of θEl,A result in 
different values of ‖ρA‖. The earth is considered as a sphere with the 
earth’s mean spherical radius R. ρA,V is the geometric distance between 
the satellite and position A when the satellite over position A. γ is an 
angle defined for auxiliary calculation. ‖ρA‖ can be treated as a depen
dent variable of θEl,A and expressed as follows: 

‖ρA‖ =
(ρA,V + R)sinγ

sin
(
θEl,A + 90◦

) (12) 

γ = 90◦

− θEl,A − β (13) 

β = arcsin
(

Rsin
(
θEl,A + 90◦)

(ρA,V + R)

)

(14) 

‖r‖ is set to 5000 m. In order to maximize ωmax, ρA,V is set to 21528 
km, which is the altitude of the BDS MEO satellite. The corresponding 
values of ωmax to different values of θEl,A are shown in Fig. 7. Since 
sin

(
θEl,A + 90◦), which is the denominator of (12), cannot be 0, the value 

of ωmax when θEl,A of 90◦ is not calculated. The phenomenon that the 
higher θEl,A leads to the larger ωmax is demonstrated in Fig. 7. With a 
difference of no more than 0.003◦ between the maximum and minimum 
values of ωmax, ωmax takes the maximum value of 0.0133◦ in the subse
quent analysis, regardless of the different values of θEl,A. Therefore, 
when the position error is 5000 m, θEl,B is within the interval 
[
θEl,A − 0.0133◦, θEl,A + 0.0133

]
. Fig. 8 shows f

(
θEl,A

)
for varying θEl,A. As 

θEl,A increases, both the rate of change and the value of f
(
θEl,A

)
decrease. 

This relationship also holds between θEl,B and f
(
θEl,B

)
. As the midpoint of 

the interval for θEl,B, a lower θEl,A results in a larger difference between 
f
(
θEl,A

)
and f

(
θEl,B

)
, which may lead to a larger ΔTtropo according to (10). 

Since (θEl,A − 0.0133◦) becomes negative when θEl,A is smaller than 
0.0133◦, θEl,A is taken as 0.0133◦.

Fig. 5. Diagram of the position error sphere.

Fig. 6. Different values of elevation θEl,A result in different values of ‖ρA‖.

Fig. 7. The values of ωmax correspond to different values of θEl,A.

Fig. 8. The values of f
(
θEl,A

)
correspond to different values of θEl,A.
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The impact of the position error on the total tropospheric delay at the 
zenith is analyzed secondly. The values of R(hA) corresponding to hA 
from − 5000 m to 5000 m are shown in Fig. 9. The portion of the 
parabola y(hT) to the left of the vertex can be used to fit R(hA) , which 
means that both the rate of change and the value of R(hA) decrease as hA 
increases. A smaller hA, combined with a larger difference between hA 
and hB, will result in a larger ΔTtropo. Since the earth is modeled as a 
sphere, the difference between hA and hB is considered as the projection 
of r on the U-axis. It can be inferred that ΔU should be as large as 
possible to obtain a larger ΔTtropo.

A special case is set to find the maximum of ΔTtropo, where hA is 0 m, 
θEl,A is 0◦, ‖r‖ is 5000 m, hE is − 5000 m. In this case, even though the 
actual value of ωmax is less than 0.0133◦, it is set to 0.0133◦ to maximize 
the difference between f

(
θEl,A

)
and f

(
θEl,B

)
. Then ΔTtropo is calculated to 

be 230.6 ns. That is, a position error of 5000 m will result in a maximum 
tropospheric delay error of 230.6 ns. In the case where ‖r‖ is 5 m, the 
corresponding values of ωmax to different values of θEl,A are shown in 
Fig. 10. When hB and hA are -5000 m and − 4995 m, respectively, the 
maximum tropospheric delay error is 0.3 ns.

3.3. Ionospheric delay

The calculation process of ionospheric delay Tiono,A at position A 
based on the Klobuchar model is shown in Fig. 11. The vertical iono
spheric delay Tiono,V,A is fitted by a positive half cosine function of tA, 
which is the local time at the Ionospheric Pierce Point (IPP). AMP and 
PER are the amplitude and the period of the positive half cosine func
tion. φm,A is the geomagnetic latitude of IPP, which can be calculated by 
the latitude, the longitude, θAz,A and θEl,A. αi and βi are the ionospheric 
parameters obtained from the GNSS navigation message. The iono
spheric delay Tiono,A at position A can be converted from Tiono,V,A with an 
ionospheric mapping function F

(
θEl,A

)
.

The ionospheric delay error ΔTiono caused by the position error can 
be expressed as follows: 

ΔTiono = Tiono,B − Tiono,A

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

5 × 10− 9( F
(
θEl,B

)
− F

(
θEl,A

) )
,

⃒
⃒
⃒
⃒
2π

(
tA/B − 50400

)

PER

⃒
⃒
⃒
⃒ ≥ 1.57

F
(
θEl,B

)
Tiono,V,B − F

(
θEl,A

)
Tiono,V,A,

⃒
⃒
⃒
⃒
2π

(
tA/B − 50400

)

PER

⃒
⃒
⃒
⃒ < 1.57

(15) 

Tiono,B is the ionospheric delay at position B calculated by the Klo
buchar model. Tiono,V,B and θEl,B are the vertical ionospheric delay and the 
elevation of position B, respectively. The subscript A/B indicates that 
both tA and tB satisfy the same condition. In the case of 
⃒
⃒2π

(
tA/B − 50400

)
/PER

⃒
⃒ ≥ 1.57, that is, during the nighttime, ΔTiono 

depends only on θEl,A and θEl,B. Fig. 12 shows the values of F
(
θEl,A

)

correspond to different values of θEl,A. As θEl,A increases, both the rate of 
change and the value of f

(
θEl,A

)
decrease. ωmax caused by the position 

error ‖r‖ has been calculated in section 3.2. Therefore, the maximum 
absolute value of ΔTiono during the nighttime can be calculated based on 
F
(
θEl,T = 0◦

)
and F

(
θEl,E = ωmax

)
, which are 5.0 × 10 - 3 ns when ‖r‖ is 

5000 m and 5.0 × 10 - 6 ns when ‖r‖ is 5 m.
In the case of 

⃒
⃒2π

(
tA/B − 50400

)
/PER

⃒
⃒ < 1.57, Tiono,V,A is determined 

by the geographic longitude, the latitude, θAz,A, θEl,A and tA. Since there 
are too many parameters that need to be analyzed, Tiono,V,A will be 
calculated by traversing parameters to find those that lead to the fastest 
rate of change in the vertical ionospheric delay. tA is determined by the 
GNSS signal transmission time and the position of IPP. Since Tiono,V,A is 

Fig. 9. The values of ΔR(hA) correspond to different values of hA.

Fig. 10. The values of ωmax correspond to different values of θEl,A when ‖r‖ is 
5 m.

Fig. 11. The calculation process of the ionospheric delay Tiono,A at position A.

Fig. 12. The values of F
(
θEl,A

)
correspond to different values of θEl,A.
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calculated by traversing the parameters including tA, the GNSS signal 
transmission time can be taken as any epoch within a GPS week. θEl,A is 
taken as 0◦ to ensure that F

(
θEl,A

)
achieves both its maximum value and 

rate of change, providing Tiono,A with the opportunity to reach its 
maximum. The ionospheric parameters are derived from the broadcast 
ephemeris on September 5, 2023. The corresponding values of Tiono,V,A 

to different values of latitude (only the northern hemisphere is consid
ered), longitude, and θAz,A are shown from Fig. 13(a)–(e).

Fig. 13(a) to Fig. 14(e) illustrate that Tiono,V,A decreases as the lati
tude of position A increases, suggesting that the maximum value of 
Tiono,V,A may occur in low-latitude areas. Therefore, the latitude of po
sition A is set to 0◦. The rate of change of Tiono,V,A with respect to θAz,A is 
shown in Fig. 14. The corresponding values of θAz,A and longitude when 
Tiono,V,A reaches its maximum rate of change can be estimated as 120◦

and − 90◦, respectively.
When ‖r‖ of 5000 m is on the E-N plane, the values of longitude and 

the latitude of position B are within the ranges [-89.9551◦, − 90.0449◦] 
and [-0.0452◦, 0.0452◦], respectively. In this case, the change of the 
latitude and the longitude are too small to traverse them to cover the 
position of the IPP. Therefore, the selection of tA needs to be considered. 
Since the positive half cosine function is used to fit the vertical iono
spheric delay except the nighttime period, the closer tA approaches the 
endpoints of the nighttime interval, the greater the rate of change of the 
vertical ionospheric delay. The position error will make tA change to tB, 
which is the local time at IPP of position B. Therefore, tA is selected close 

to the values of the endpoints (6 h and 22 h) but not exactly at them, to 
prevent Tiono,V,A from becoming a constant when tB is within the night
time period. tA is obtained by converting an observation epoch on 
September 5, 2023, which is about 21 h at position A.

When the position error is 5000 m, the corresponding values of 
ΔTiono to different values of longitude and latitude of position B are 
shown in Fig. 15. The absolute value of ΔTiono, |Tiono|, is used to quantify 

Fig. 13. The values of Tiono,V,A correspond to different values of the latitude, the longitude, and θAz,A.

Fig. 14. The values of Tiono,V,T correspond to different values of θAz,A and the longitude when latitude is 0◦.

Fig. 15. The corresponding values of ΔTiono to different longitude and latitude 
values of position B when the position error is 5000 m.
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the impact of the position error on ionospheric delay. The maximum 
|Tiono| is 1.6 × 10 - 1 ns, which corresponds to position B with 
geographic coordinates (0.0452◦S, 89.9551◦W). If ‖r‖ decreases, that is, 
the difference of longitude and latitude between position B and position 
A decreases, then |Tiono| must be less than 1.6 × 10 - 1 ns.

The maximum value of |Tiono| is further analyzed with consideration 
of the azimuth. The maximum difference between the azimuth θAz,B of 
position B and θAz,A caused by ‖r‖ of 5000 m is 0.0266◦, of which 
calculation is shown in section 3.2. In Fig. 16, when θAz,B is 119.9870◦, 
|Tiono| achieves its maximum 1.6 × 10 - 1 ns. Since |Tiono| analyzed above 
is based on position B (0.0452◦S, 89.9551◦W), that is, ‖r‖ is 7070 m, the 
maximum value of |Tiono| when ‖r‖ is 5000 m will be actually smaller 
than 1.6 × 10 - 1 ns. In other words, the ionospheric delay error caused 
by 5000 m position error is no more than 1.6 × 10 - 1 ns.

When the projection of r on the U-axis is not zero, θEl,B is the only 
variable in the calculation of ΔTiono. θEl,B varies from 0◦ to 0.0133◦, and 
the corresponding values of ΔTiono are shown in Fig. 17. The maximum 
|Tiono| is 1.3 × 10 - 2 ns when θEl,B is 0.0133◦. The maximum ionospheric 
delay error is estimated jointly by the position error occurring in the N-E 
plane and the U-axis. In this way, the ionospheric delay error caused by 
5000 m position error is no more than 1.7 × 10 - 1 ns, which is the sum 
of 1.6 × 10 - 1 ns and 1.3 × 10 - 2 ns.

The same method is used for the analysis of 5 m position error and 
the ionospheric delay error is no more than 1.7 × 10 - 4 ns.

3.4. Combined impact on time transfer

The results from Sections 3.1 to 3.3 indicate that the largest 
magnitude of the error caused by the position error occurs in the geo
metric distance delay. Therefore, ΔTgeo, ΔTtropo, and ΔTiono are 
compared in the scenario where ΔTgeo is minimized, while ΔTtropo and 
ΔTiono are maximized. This scenario occurs when θEl,A is 0.0133◦ and 
both ΔE and ΔN are zero, as discussed in Sections 3.2 and 3.3. When ‖r‖
is 5000 m, ΔTgeo is calculated to be 1533.8 ns by (5), which is 6 times 

larger than ΔTtropo of 230.6 ns and 8927 times larger than ΔTiono of 1.7 ×

10 - 1 ns.
However, when ‖r‖ is 5 m, ΔTgeo of 1.5 × 10 - 6 ns calculated by (5) 

is smaller than ΔTtropo of 0.3 ns. Since the elevation of 0◦ is not common 
and it is the value of elevation mask angle set in R2CGGTTSv8.8 soft
ware, which is used for experiments, the analysis was conducted with 
θEl,A of 10◦. The scenario where the absolute value of ΔU is equal to ‖r‖
and θEA is 100◦ is shown in Fig. 18, making ΔTgeo of 2.9 ns and ΔTtropo of 
5.1 × 10 - 2 ns. ΔTgeo will increase with the change of θEA when θEA is 
within the interval [0◦, 80◦] ∪ [100◦, 180◦]. But ΔTtropo will not exceed 
5.1 × 10 - 2 ns. These results show that, when the position error is 5 m, 
ΔTgeo will be two orders of magnitude larger than ΔTtropo in about 89 % 
of the cases ([0◦, 80◦] ∪ [ 100◦, 180◦])/180◦≈0.89). The ratio of 89 % 
will increase as the position error increases.

ΔTiono when θEl,A is 10◦ is no longer calculated since it is less than 
1.7 × 10 - 4 ns, which is its maximum value and four orders of magni
tude smaller than ΔTgeo of 2.9 ns.

In summary, when θEA is within the interval [0◦, 80◦] ∪ [100◦, 180◦], 
ΔTgeo is two orders of magnitude larger than ΔTtropo and four orders of 
magnitude lager than ΔTiono. Therefore, compared with the geometric 
distance delay error caused by the position error, the tropospheric delay 
error and the ionospheric delay error can be ignored. The time transfer 
error ΔTL - G can be estimated to ΔTgeo and calculated by (16) and (17). 
The linear and cosine relationships between ‖r‖, θEA, and ΔTgeo extend 
to ΔTL− G. 
⎧
⎪⎪⎨

⎪⎪⎩

ΔTL− G = k‖r‖

k = −
‖r‖ − ‖ρA‖cosθEA

c
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖r‖2
+ ‖ρA‖

2
− 2‖r‖‖ρA‖cosθEA

√ (16) 

ΔTL - G = AcosθEA (17) 

4. Experiments and results

In order to validate that the time transfer error is mainly caused by 
the geometric distance delay error and to evaluate the accuracy of (16) 
and (17), two experiments are designed. In experiment 1, comparisons 
will be made between the time transfer error, the tropospheric delay 
error, the ionospheric delay error, and the geometric distance delay 
error caused by different position errors. Experiment 2 will compare the 
theoretical time transfer error calculated based on (16) with the true 
time transfer error, and try to use the cosine function in the form of (17) 
to fit the true time transfer error when the position error is constant. The 
residuals are calculated to evaluate the performance of (16) and the 
cosine function fitting. Both experiments are based on real GNSS 
observation data.

Fig. 16. The values of ΔTiono correspond to different azimuth values of posi
tion B.

Fig. 17. The values of ΔTiono correspond to different values of θEl,B.

Fig. 18. The scenario where θEl,A is 10◦ and ‖r‖ is 5 m.
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4.1. Experiments setup

The GNSS time transfer receiver BJ02 referenced to TS(BJTU), which 
is an atomic time scale kept by our laboratory, is used for obtaining 
GNSS data. Seven BDS and GPS satellites are selected, specifically sat
ellites C05, C02, C28, C41, G32, G04, and G16. The BDS B1I data at 
2:00:00 on September 5, 2023 and the GPS L1 C/A data at 13:00:00 on 
September 5, 2023 are used for analysis. The values of θEl,A for these 

satellites are shown in Table 1. The higher elevation is about 20◦ or 30◦

higher than the lower one, to ensure an approximate uniform distribu
tion of elevation ranging from 15◦ to 90◦.

Both position A and position B are described in the local Cartesian 
coordinate system (E, N, U). Position A of BJ02 is calculated by the PPP 
technique.

In experiment 1, time transfer experiments with the real BDS and 
GPS signal and the Monte Carlo simulation experiments are designed. 
ΔE, ΔN and ΔU, ranging from − 5000 m to 5000 m, are added to position 
A to generate position B. The software R2CGGTTSv8.8 is used to 
generate the 30-second files in Common GNSS Generic Time Transfer 
Standard (CGGTTS) format. The REFSYS values in these files with po
sition A and position B are differentiated to represent ΔTL - G. ΔTtropo and 
ΔTiono are calculated based on MDTR and MDIO values in CGGTTS files, 

Table 1 
θEl,A of BDS and GPS Satellites.

PRN C05 C02 C28 C41 G32 G04 G16

θEl,A/◦ 15.9 33.6 53.9 85.2 15.4 35.3 60.2

Fig. 19. (a)~(d) ΔTL - G of the satellites C05, C02, C28 and C41. (e)~(h) ΔTtropo of the satellites C05, C02, C28 and C41. (i)~(l) ΔTiono of the satellites C05, C02, C28 
and C41. (m)~(p) The differences between ΔTL - G and ΔTgeo of the satellites C05, C02, C28 and C41.
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respectively.
In experiment 2, the cases with the coordinate error of − 5000 m/ 

5000 m are selected. The true time transfer error is ΔTL - G calculated in 
experiment 1, and the theoretical time transfer error is calculated by 
(16) or the fitted cosine function. The residual is represented by the 
absolute value of the difference between the theoretical and the true 
time transfer errors.

4.2. Results and discussion

4.2.1. Experiment 1
ΔTL - G,ΔTtropo, ΔTiono and ΔTgeo of the BDS and the GPS satellites 

caused by ΔE, ΔN and ΔU are shown in Fig. 19(a)–(l) and Fig. 20(a)–(i). 
The higher θEl,A of the satellites is, the larger ΔTL - G caused by ΔU, since 
θEA is close to 0◦ or 180◦. On the contrary, the effects of ΔN and ΔE on 
ΔTL - G reduce since θEA approaches 90◦. From the absolute value of 
ΔTL - G for the satellite C41, ΔTL - G caused by ΔE is the smallest among 

all BDS and GPS cases, which is 823.9 ns when ΔE is − 5000 m. The jump 
values of 0.1 ns in ΔTtropo and ΔTiono are due to the 0.1 ns resolution of 
MDTR values and MDIO values. The absolute values of ΔTtropo and 
ΔTiono within the coordinate error of 5000 m do not exceed 0.1 ns, which 
are much smaller than ΔTL - G and can be negligible. The differences 
between ΔTL - G and ΔTgeo of the BDS and the GPS satellites are shown in 
Fig. 19(m)–(p) and Fig. 20(j)–(l), which are much smaller than ΔTL - G, 
indicating that the geometric distance delay error is the main cause of 
the time transfer error. Since ΔE, ΔN and ΔU are added to position A 
respectively, the coordinate error can be treated as the position error. 
The linear relationship between ΔTL - G and the position error can be 
seen in each case, which is consistent with the theoretical analysis.

4.2.2. Experiment 2
θEA can be calculated based on the known coordinates of the satel

lites, position A, and position B. The true values of ΔTL - G are derived 
from the results of experiment 1 shown in Fig. 19 and Fig. 20. Tables 2 

Fig. 20. (a)~(c) ΔTL - G of the satellites G32, G04 and G16. (d)~(f) ΔTtropo of the satellites G32, G04 and G16. (g)~(i) ΔTiono of the satellites G32, G04 and G16. (j)~ 
(l) The differences between ΔTL - G and ΔTgeo of the satellites G32, G04 and G16.
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and 3 show the theoretical ΔTL - G calculated by (16) and the true ΔTL - G 
at the coordinate error of − 5000 m/5000 m of the BDS and the GPS 
satellites. The maximum residual is about 183 times smaller than the 
absolute value of the true ΔTL - G, which shows that the theoretical 
ΔTL - G and the true ΔTL - G are well consistent, indicating that the time 
transfer error caused by the position error can be estimated by (16) 
effectively. Tables 4 and 5 show the amplitude values of the fitted cosine 
functions and the residuals. The fitted cosine function, which takes the 
form of (17), is calculated based on θEA and the true ΔTL - G of each 
satellite by ordinary least squares. The maximum residual 29.1 ns is 
about 158 times smaller than the absolute value of the true ΔTL - G 
4599.9 ns. It is demonstrated that the cosine function can be utilized to 
describe the relationship between θEA and ΔTL - G.

5. Conclusion

The error sources related to the position of the time transfer station in 
GNSS time transfer are analyzed individually to describe how they affect 
time transfer and quantify the impact of the position on GNSS time 
transfer. The coordinate vectors of the receiver and the satellite are 
defined. The method for mapping them to GNSS time transfer is pro
posed. The error angle, defined based on the receiver and the satellite 
coordinate vector, is used to quantify the impact. The correction terms 

for the errors related to the receiver coordinates include the geometric 
distance delay, the ionospheric delay, and the tropospheric delay. The 
geometric distance delay error, which is two and four orders of magni
tude larger than the tropospheric delay error and the ionospheric delay 
error separately, is the main cause of the time transfer error. An 
analytical expression describing the relationship between them is 
derived. For the identical value of the position error, the time transfer 
error induced by the position error is different for different directions 
with respect to the true position. The time transfer error is maximized at 
3.3 ns per meter of the position error when the error angle is 0◦ or 180◦, 
and minimized when the error angle is 90◦. However, maximum time 
transfer error is constrained to 3.3 ns with the position error of one 
meter. When the error angle is constant, there is an approximately linear 
relationship between the time transfer error and the position error. 
When the position error is constant, the time transfer error follows 
approximately a cosine relationship with the error angle.
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Table 2 
The theoretical and the true values of ΔTL− G for C05, C02, C28, and C41.

PRN Coordinate error /m

ΔE = -5000 ΔE = 5000 ΔN = -5000 ΔN = 5000 ΔU = -5000 ΔU = 5000

C05 θEA/◦ 26.9 153.1 68.9 111.1 105.9 74.1
Theoretical ΔTL− G /ns 14871.5 − 14872.4 6004.5 − 6008.1 − 4574.8 4571.0
True ΔTL− G /ns 14871.8 − 14872.4 6005.4 − 6007.3 − 4599.9 4586.0
Residual /ns 0.3 0 0.9 0.8 25.1 15.0

C02 θEA/◦ 54.0 126.0 53.8 126.2 123.6 56.4
Theoretical ΔTL− G /ns 9807.6 − 9810.5 9838.2 − 9841.1 − 9227.9 9224.9
True ΔTL− G /ns 9808.4 − 9809.8 9839.0 − 9840.4 − 9240.2 9232.8
Residual /ns 0.8 0.7 0.8 0.7 12.3 7.9

C28 θEA/◦ 109.6 70.4 61.0 119.0 143.9 36.1
Theoretical ΔTL− G /ns − 5586.0 5579.4 8089.2 − 8094.9 − 13474.0 13471.4
True ΔTL− G /ns − 5584.3 5581.0 8090.7 − 8093.5 − 13482.3 13476.9
Residual /ns 1.7 1.6 1.5 1.4 8.3 5.5

C41 θEA/◦ 87.2 92.8 86.1 93.9 175.2 4.8
Theoretical ΔTL− G /ns 822.0 − 829.7 1116.4 − 1124.1 − 16620.1 16620.0
True ΔTL− G /ns 823.9 − 827.8 1118.3 − 1122.2 − 16627.3 16623.9
Residual /ns 1.9 1.9 1.9 1.9 7.2 3.9

Table 3 
The theoretical and the true values of ΔTL− G for G32, G04 and G16.

PRN Coordinate error /m

ΔE = -5000 ΔE = 5000 ΔN = -5000 ΔN = 5000 ΔU = -5000 ΔU = 5000

G32 θEA/◦ 117.6 62.4 32.2 147.8 105.4 74.6
Theoretical ΔTL− G /ns − 7718.2 7712.8 14108.9 − 14110.9 − 4424.2 4417.7
True ΔTL− G /ns − 7716.8 7714.2 14109.5 − 14110.4 − 4449.5 4434.2
Residual /ns 1.4 1.4 0.6 0.5 25.3 16.5

G04 θEA/◦ 52.5 127.5 122.9 57.1 125.3 54.7
Theoretical ΔTL− G /ns 10156.2 − 10160.9 − 9050.0 9044.7 − 9652.0 9647.0
True ΔTL− G /ns 10157.4 − 10159.8 − 9048.8 9046.1 − 9663.1 9654.8
Residual /ns 1.2 1.1 1.2 1.4 11.1 7.8

G16 θEA/◦ 65.4 114.6 74.2 105.8 150.2 29.8
Theoretical ΔTL− G /ns 6931.7 − 6938.4 4533.0 − 4540.5 − 14474.6 14472.6
True ΔTL− G /ns 6933.5 − 6936.9 4535.0 − 4538.7 − 14482.3 14477.5
Residual /ns 1.8 1.5 2.0 1.8 7.7 4.9
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Table 4 
The amplitude values and residuals for C05, C02, C28, and C41.

PRN Coordinate error /m

ΔE =
-5000

ΔE =
5000

ΔN =
-5000

ΔN =
5000

ΔU =
-5000

ΔU =
5000

C05 Amplitude 
/ns

16684.2

Residual 
/ns

7.1 6.5 0.9 1.0 29.1 15.2

C02 Amplitude 
/ns

16679.3

Residual 
/ns

4.6 6.0 11.9 10.5 10.0 2.6

C28 Amplitude 
/ns

16680.3

Residual 
/ns

11.1 14.4 3.9 6.7 4.8 0.6

C41 Amplitude 
/ns

16683.7

Residual 
/ns

8.9 12.8 16.4 12.5 2.2 1.2

Table 5 
The amplitude values and residuals for G32, G04 and G16.

PRN Coordinate error /m

ΔE =
-5000

ΔE =
5000

ΔN =
-5000

ΔN =
5000

ΔU =
-5000

ΔU =
5000

G32 Amplitude 
/ns

16673.8

Residual 
/ns

8.1 10.7 0.3 1.2 21.7 6.4

G04 Amplitude 
/ns

16687.5

Residual 
/ns

1.3 1.1 15.4 18.1 20.1 11.8

G16 Amplitude 
/ns

16680.1

Residual 
/ns

10.1 6.7 6.6 2.9 7.9 3.1
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